Instrumental variables estimation of stationary and non-stationary cointegrating regressions
نویسندگان
چکیده
Instrumental variables estimation is classically employed to avoid simultaneous equations bias in a stable environment. Here we use it to improve upon ordinary least-squares estimation of cointegrating regressions between non-stationary and/or long memory stationary variables where the integration orders of regressor and disturbance sum to less than 1, as happens always for stationary regressors, and sometimes for mean-reverting non-stationary ones. Unlike in the classical situation, instruments can be correlated with disturbances and/or uncorrelated with regressors. The approach can also be used in traditional non-fractional cointegrating relations. Various choices of instrument are proposed. Finite sample performance is examined.
منابع مشابه
Cointegrating polynomial regressions: Fully modified OLS estimation and inference
This paper develops a fully modified OLS estimator for cointegrating polynomial regressions, i.e. for regressions including deterministic variables, integrated processes and powers of integrated processes as explanatory variables and stationary errors. The errors are allowed to be serially correlated and the regressors are allowed to be endogenous. The paper thus extends the fully modified appr...
متن کاملStructural Spurious Regressions and A Hausman-Wu-type Cointegration Test∗
Economic models often imply that certain variables are cointegrated. However, tests often fail to reject the null hypothesis of no cointegration for these variables. One possible explanation of these test results is that the error is unit root nonstationary due to a nonstationary measurement error in one variable. For example, currency held by domestic economic agents for legitimate transaction...
متن کاملNonlinear estimators with integrated regressors but without exogeneity
This paper analyzes nonlinear cointegrating regressions as have been recently analyzed in a paper by Park and Phillips in Econometrica. I analyze the consequences of removing Park and Phillips’ exogeneity assumption, which for the special case of a linear model would imply the asymptotic validity of the least squares estimator for linear cointegrating regressions. For the linear model, the unli...
متن کاملA Spurious Regression Approach to Estimating Structural Parameters∗
Economic models often imply that certain variables are cointegrated. However, tests often fail to reject the null hypothesis of no cointegration for these variables. One possible explanation of these test results is that the error is unit root nonstationary due to a nonstationary measurement error in one variable. For example, currency held by the domestic economic agents for legitimate transac...
متن کاملThe Time Adaptive Self Organizing Map for Distribution Estimation
The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006